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Abstract— Computing is now shifting towards 
multiprocessing. The fundamental goal of multiprocessing 
is improved performance through the introduction of 
additional hardware threads or cores (referred to as 
“cores” for simplicity). Modern network stacks can 
exploit parallel cores to allow either message-based 
parallelism or connection-based parallelism as a means to 
enhance performance. OpenSolaris has redesigned and 
parallelized to better utilize additional cores. Three 
special technologies, named Softring Set, Soft ring and 
Squeue are introduced in OpenSolaris for stack 
parallelization. In this paper, we study the OpenSolaris 
packet receiving process and its core parallelism 
optimization techniques. Experiment results show that 
these techniques allow OpenSolaris to achieve better 
network I/O performance in multiprocessing 
environments; however, network stack parallelization has 
also brought extra overheads for system. An effective and 
efficient network I/O optimization in multiprocessing 
environments is required to cross all levers of the network 
stack from network interface to application. 
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I. INTRODUCTION 
As network bandwidths continue to increase at an 

exponential pace, network stacks for uni-processor 
architecture cannot keep pace with such growth in order 
to efficiently utilize that bandwidth. At the same time, 
the growing challenges of power consumption and heat 
dissipation on single-core processor make the 
computing industry shifting to multi-core architecture. 
Therefore, it is a trend to use parallel processing core to 
optimize network stack on multi-core architecture to 
make up for the loss in performance growth of uni-
processor architecture.  

The network stacks of mainstream operating 
systems have already been parallelized. However, 
parallelization has also brought extra overheads for OS 
(Operating System): contention for shared resources, 
software synchronization, and cache inefficiency [2]. 
Therefore, how to reduce these overheads have been the 
leading challenges on network stack parallel 
optimization. Investigations [1] indicate that the 
coordinated affinity scheduling of network stack 
processing and network applications on the same 
processor can significantly reduce the extra overheads. 
The coordinated affinity scheduling of network 
processing and network applications on the same core 
has three goals: interrupt affinity, flow affinity, and 
network data affinity. Interrupt affinity implies that 
network interrupts of the same type should be directed 
to a single core. Flow affinity means that packets of 

each data flow should be processed by a single core. 
Network data affinity means that TCP/IP network 
processing and network applications should be 
scheduled on the same core to maximize cache 
efficiency. 

The OpenSolaris network stack architecture 
(internally named FireEngine) went through multiple 
transitions by which the core pieces (e.g., socket layer, 
TCP, UDP, IP and device driver) using Softring Set 
(SRS), Soft ring and Squeue (serialization queue) [4]. In 
the hope of maximizing network stack parallelism, 
FireEngine employs more threads on network stack 
processing [6]. In some degree, this strategy addresses 
the increasing performance demands of network-centric 
applications and workloads. However, this strategy has 
brought potential side effects that more threads are 
bound to incur more context switch and decrease the 
possibility of cache affinity on certain circumstance. 
This paper will explore the strength and weakness of 
OpenSolaris network stack in multiprocessing 
environments. Because high-performance TCP data 
receiving is a challenge to network stack performance, 
our study mainly focus on OpenSolaris TCP packet 
receiving process. 

The rest of the paper is organized as follows: 
Section II gives an introduction of Solaris network stack 
history. Section III studies the OpenSolaris packet 
receiving process and its optimization techniques. The 
evaluation and experimental results are presented in 
Section IV. Finally, Section V concludes the paper. 

II. BACKGROUND 
The network stack of Solaris 1.x was a BSD variant 

and was very similar to the BSD Reno implementation. 
Solaris 2.x migrated to AT&T SVR4 architecture. With 
SVR4, the network stack went through a transition from 
a BSD style stack to a STREAMs-based one [5]. During 
the late 90s, with the prevalence of the multi-processor 
and high speed NIC, how to parallel process high speed 
network flow on multiple processors became an urgent 
problem to OSes [1]. OpenSolaris network stack went 
through one more transition to improve its parallelism. 

The FireEngine is the new network stack developed 
by Sun to meet the current and future networking needs. 
Three special technologies: SRS, Soft ring and Squeue 
are introduced for stack optimization. SRS is 
responsible for collecting incoming packets from Rx 
ring and classifying them into each soft-ring. Soft-ring 
is a software abstraction of hardware Rx ring to enhance 
system parallelism granularity. In addition, Squeue 
tackles multiple threads synchronization and mutual 

This research was supported in part by the Universities Research 
Association (URA) Visiting Scholars Program and IIT Fieldhouse 
Research Fellowship.   

The 35th IEEE Conference on Local Computer Networks (LCN), Denver, 2010  



 2 

exclusion from IP to sockfs. These techniques allow 
OpenSolaris network stack possible to achieve much 
better performance in multiprocessing environments. 

OpenSolaris is a thread-based, fully preemptible 
system. To achieve the objectives of fairness, 
interactivity and efficiency, the Solaris kernel 
implements a global priority model to schedule threads 
running in a prioritized round robin manner. There are 
totally 170 values for thread priority assignment. 
Interrupt threads (160-169), Real-time (RT) threads 
(100-159), system threads (60-99), and user threads (0-
59) are assigned with different priorities, respectively. 
A higher-priority thread preempts a lower one running 
on a core in runtime. OpenSolaris network stack are 
executed with threads. Using multi-threads to handle 
packet processing can maximize network stack parallel 
processing and reduce overall respond time [3]. 
However, preemption in packets processing and extra 
context switch incur some potential negative effects on 
network performance, especially in the high-speed 
networking environments. 

III. SOLARIS PACKET RECEIVING PROCESS 

 
Figure 1.  Solaris Networking Packet Receiving Process 

An OpenSolaris network stack TCP packet receive 
path is illustrated in Figure 1. On packet reception, there 
are totally six types of threads working cooperatively in 
the network stack to deliver an incoming packet from its 
ingress to its final application. SRS, Soft-ring, and 
Squeue are the main components of OpenSolaris 
network stack. They are actually data structures to 
queue incoming packets at different protocol levels. 
Every data structure has an attached worker or poll 
thread to perform the corresponding protocol 
processing. According to the scope of these threads, the 
packet reception can be roughly classified into three 
stages [5]: (1) Packets are received and classified from 
network interface card (NIC) to MAC layer’s SRS, 
which are driven by Device Driver Processing; (2) 
packets are spread to multiple Soft-Rings in SRS by 
SRS worker thread. And then, every SR worker thread 
continues the MAC Layer Processing to deliver packets 
to IP interface; (3) depending on the speed of packets 
arriving to Squeue, either Squeue worker or poll thread 
will execute merged TCP/IP modules in Squeue 
exclusively. Finally, Packet data is copied from the 
socket receive buffer to the application. The following 
section details these three stages. 
A. Device Driver Processing 

The Device Driver performs the layer 1 and 2 
functions of the OSI 7-layer network model. When 
packets are received by the NIC (assuming, NIC does 

not support RSS technology), the NIC will generate 
interrupts and inform the cores to respond to the 
interrupt requests. A responding core then suspends its 
current thread and invokes the corresponding NIC 
interrupt thread to execute interrupt handler. After the 
interrupt handler is completed, then interrupt thread 
surrenders the core to the interrupted thread and goes to 
sleep till a new packet arrives. An interrupt thread with 
higher priorities is scheduled and preempted as a normal 
one to classify and forward incoming packet to SRS 
queues. After the packet delivery is completed, the 
interrupt thread wakes up a SRS worker thread to take 
over the next processing (shown in Figure 2i a). The 
process is called the interrupt mode. If network 
interrupts come too fast and the SRS worker thread is 
not able to handle incoming packets timely, a poll 
thread will be waked up by the worker thread to stop 
further NIC interrupts and pull a chain of packets from 
the Rx ring time to time, which is named the poll mode. 
The poll thread will switch the NIC back to the interrupt 
mode when there are no packets queued in Rx-ring. On 
the receive side, a one to one mapping exists between a 
SRS and a NIC hardware Rx ring. Thus, each individual 
SRS can switch the hardware Rx ring processing 
between the interrupt thread and the poll thread to 
control incoming path bandwidth without impacting 
each other. After packets have been delivered into SRS, 
a software classification is executed by the SRS worker 
thread to spread incoming packets to different soft 
rings. 

An RSS-enabled NIC supports multiple Rx rings. 
Each ring is assigned a separate network-interrupt, and 
hence an interrupt thread. To further improve the 
network-processing efficiency. OpenSolaris network 
stack applies a fast path mechanism that the SRS and 
soft ring data structures will be bypassed by networking 
processing if the NIC supports the RSS technology 
(Figure 2i b). Under such conditions, a Squeue has a 
one to one mapping with an Rx ring. When network 
packets arrive, the RSS-enabled NIC classifies and 
steers incoming packets into different Rx rings. The 
associated interrupt thread for each Rx ring delivers 
incoming packets to the mapping Squeue directly. In 
addition, Squeue poll thread replaces SRS thread to pull 
the incoming packets from the corresponding Rx rings 
owned by each Squeue and dynamic switches the Rx 
ring between interrupt and polling mode to control the 
rate of interrupt and packet receiving. 
B. Mac Layer Processing 

Once the SRS worker thread has been waked up 
(non-fast-path case), the software classification will be 
executed to sort incoming packets as previously 
mentioned. A full-featured software classification is 
used when the NIC is not capable of classifying based 
on L3/L4 headers, or is out of hardware Rx rings. 
Software classification is performed by interrupt thread 
(interrupt thread could continue to handle packets 
delivered if there are no other packets backlogged on 
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SRS queue) or SRS worker thread very early to assign a 
packet to one of soft rings associated with the SRS 
according to load spreading policies (e.g., hash of src IP 
address or TCP/UDP protocol).  

      
     i) Device Driver Packet Receiving               ii) Mac Layer Packet Processing         iii) Protocol Stack Processing 

Figure 2.  Three Stages of the Packet Receiving  

The software classification functionality of the SRS 
and soft rings provides the classification capability in 
the MAC layer. These software modules aim to improve 
network stack parallelism if RSS is not available. 
Usually, a single Squeue is assigned to a SRS in the 
absence of soft rings, or to each soft ring within a SRS. 
With this assignment approach, Squeue could control its 
bandwidth with its queue backlog state through 
dynamic switching between soft ring worker thread and 
Squeue poll thread. However, Soft rings within a single 
SRS can be assigned to different Squeues. This function 
is named fan-out. Since each Squeue is tied to a 
separate core, the fan-out function spreads incoming 
traffic to different cores and improves OpenSolaris 
network stack parallelization in the MAC layer if RSS 
is not available. After classification, SRS worker thread 
will wake the corresponding soft ring worker thread up 
to process its incoming packets on different cores in 
parallel and independently. With this mechanism, TCP 
processing load could be spread to multiple cores. 
Figure 2ii illustrates packets classifying process with 
the software classification engine. 

If an RSS-enabled NIC can classify incoming 
packets to different Rx rings, the packets could be 
handed over to IP layer directly by means of function 
calls. The entire MAC layer processing will be 
bypassed. This is the fast-path mechanism that we have 
discussed earlier. Such conditions happen in the 
contexts that interrupt thread sends the incoming 
packets to Squeue directly or the Squeue polls the 
packet chain from the Rx ring with Squeue poll thread 
for flow control. 
C. Protocol Stack Processing 

Before incoming packets are further delivered by 
soft ring worker thread to Squeue (or pulled by Squeue 
poll thread), IP connection classifier creates or looks up 
a connection structure for each inbound packet. Based 
on the classification, each packet is attached to a 
connection state and queued in the Squeue to which its 
connection is bound (Figure 2iii). After being delivered 
to Squeue, the packet could be processed directly by 
soft ring worker thread, or Squeue poll thread, or 
queued for later processing by other threads. The choice 

is determined by the Squeue entry point and the state of 
the Squeue. A thread can enter Squeue for immediate 
processing only when there is no other thread accessing 
the same Squeue [4]. The Squeue only allows an 
external thread (e.g., Soft ring worker thread, interrupt 
thread on fast-path case) to do processing with a finite 
duration, after which it switches processing to Squeue 
worker thread. In the Squeue, Squeue poll thread can be 
waked up at any time to take over current processing 
when packets have been backlogged. Because 
OpenSolaris only allow a single thread to enter Squeue 
at any given time, threads have been serialized to access 
the TCP connection structure in the merged TCP/IP 
modules. This mechanism protects the whole 
connection state from IP to sockfs. Finally, application 
thread will be woken up to get its data packets on its 
sockfs buffer. 

IV. ANALYSIS AND EXPERIMENT 
We ran data transmission experiments on two 

machines connected back-to-back with optical fibers. In 
the experiments, iperf transfers TCP data in the 
direction from the sender to the receiver. The sender has 
two Intel Xeon Dual-core 3.80GHz processors, 8GB 
memory, and a Myri-10G NIC, running Linux 2.6.23. 
The receiver has two Intel Xeon Quad-core 2.66GHz 
processor, 16GB memory, and a Myri-10G NIC, loaded 
with OpenSolairs SNV129.  
A. Maximize Parallelism 

The experiments aim to evaluate the effectiveness of 
various parallelism techniques of OpenSolaris network 
stack. In the experiments, iperf transmits TCP data for 
100 seconds. The following parameters are varied: 1) 
the number of Rx rings in the NIC; 2) the number of 
soft rings; 3) enabling/disabling the fan-out function. 
For simplicity, we labelled an experiment as RaSbFc. 
Here, Ra represents a Rx rings; Sb refers to b soft rings; 
and Fc refers to whether enable (c=1) or disable (c=0) 
the fan-out function. There are totally four experiments, 
R8S0F0, R1S8F1, R1S8F0, and R1S1F0. In addition, 
we varied the number of TCP connections. Consistent 
results are obtained across repeated runs. The 
experiment results are as shown in Figure 3i. It can be 
seen that R8S0F0 achieves much higher throughputs 
than other experiments. This is because the RSS-
enabled NIC will effictively spread connections to 
different cores, and hence increases the overall 
parallelism in the receiver. The throughput of 16 
connections reaches a peak of 6.47 Gbps. When the 
number of connections is further increased, the achieved 
throughput starts to decrease. This is because that the 
increasing parallelism brings extra overheads for OS, 
which finally offsets the parallelism gains. 

It also can be seen that the software classification 
functionality of the SRS and soft rings improves 
network stack parallelism if RSS is not available. The 
experiments show the effectiveness of this mechanism. 
R1S8F1 achieves better throughputs than R1S1F0 and 
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R1S8F0. In addition, we evaluate the fan-out function 
by comparing R1S8F0 with R1S8F1. As for R1S8F0, 
since the fan-out function is disabled, the 8 soft rings 
are actually tied to a single core, the interrupt-handling 
core. As a result, only one thread can access these soft 
rings at any given time, with limited network stack 
parallelism. As for R1S8F1, the fan-out function 
actually assigns the 8 soft rings to multiple cores; 
multiple threads can assess these soft rings at any given 
time, which maximizes network stack parallelism. The 
experiment results verify our argument and clearly 
show that the throughputs of R1S8F1 are much higher 
than those of R1S8F0.  

       
i) Network Throughput on 4 Configuration       ii) Comparison Experiment Logical Flowchat 

Figure 3.  Comparison Experiment 

B. Enhance Core Affinity 
OpenSolaris network stack supports interrupt 

affinity and employs the per-core Squeue mechanism to 
ensure flow affinity. We further evaluated network 
stack performance from the perspectives of data 
affinity. We designed three experiments as shown in 
Figure 3ii: (a) network interrupts and iperf are bound to 
core 7, and the soft ring fan-out function is disabled. (b) 
The network interrupts are bound to core 7 and the soft 
ring fan-out function is disabled. Iperf is bound to a 
core set (from core 0 to 6). (c) iperf and NIC interrupts 
are bound to the core 7 and the fan-out function is 
enabled. In the experiments, iperf transmit 64 parallel 
TCP connections from the sender to the receiver for 100 
seconds. The performance metrics are collected in the 
receiver. The metrics of interest are: 1) smtx - the 
number of times cores failed to obtain a mutex 
immediately; 2) migr - the number of thread migrations 
to between cores; 3) l2_miss – the number of L2 cache 
misses; 4) bus hitm – the number of memory 
transactions with caused HITM to be asserted; 5) 
sq_lock - the number of Squeue adaptive mutex hold 
events. Consistent results are obtained across repeated 
runs. The experiment results are listed in Table I (the 
data is normalized by network bandwidth). 

In (a), since the network interrupts and iperf are 
bond to a single core and the soft ring fan-out function 
is disabled, network processing and application are 
executed on a single core. In the experiments, we 
observed that Core 7’s CPU utilization ratio reaches 
100%, and other cores’ CPU utilization ratios are 
almost 0%. The observation confirms that network 
processing and application are executed on a single 
core. Therefore, (a) guarantees data affinity in network 
processing. In (b), core 7’s CPU utilization ratio now 
reduces to 67%; the average workload on the core set 

(core 0 – 6) is 23%. The throughput of (b) is almost 
twice that of (a). In (c), we bind iperf to core 7 and 
enable the soft ring fan-out function. As a result, the 
incoming network traffics are spread across to different 
cores. For both (b) and (c), the network processing and 
application are scheduled on different cores. However, 
the hardware performance metrics clearly show that 
scheduling iperf and network processing on the 
different cores will cause significant extra costs (see 
Table I). When network processing and application are 
scheduled on different cores, it will cause three negative 
side effects: (1) Concurrent threads contention for 
shared resources (see the smtx and sq_lock 
comparison); (2) Software synchronization overheads 
(see the bus_hitm comparison); (3) Inefficient cache 
usage (see the l2_miss comparison). As a general 
purpose OS, the OpenSolaris scheduler prioritizes such 
properties as load-balancing and fairness over core 
affinity in network processing. As a result, it is more 
likely that network processing and applications are 
scheduled on different cores with more network 
parallelisms introduced in multiprocessing 
environments and leads to increased network processing 
overheads. 

TABLE I.  DATA AFFINITY ANALYSIS UNDER FIGURE 3II. 
 smtx migr l2_miss bus_hitm sq_lock 

(a) 0.04 0.02 5.88 4.34 52.20 
(b) 2.96 0.12 34.53 26.41 158.32 

 
(c) 1.34 0.04 51.94 36.18 223.83 

 
V. CONCLUSIONS 

In this paper, we study the OpenSolaris packet 
receiving process and its parallelism optimization 
techniques. Experiment results show that these 
techniques allow OpenSolaris to achieve better network 
performance in multiprocessing environments; 
however, network stack parallelization has also brought 
extra overheads for OS. A more effective and efficient 
parallel optimization still needs for improving the 
current network stack. 
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